

EYFS Links	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

		Aiverto
Place Value and Number	I can: * build, count and compare numbers to 20 and beyond	I can: count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens given a number identify one more and one less identify and represent number using objects and pictorial representations including the
Place Va		pictorial representations

can:

- count to and cross 100, orwards and ackwards. eginning with 0
- count, read and rite numbers to 00 in numerals; ount in multiples f twos, fives and ens
- given a number, lentify one more nd one less
- identify and epresent numbers sing objects and ictorial epresentations ncluding the umber line, and se the language f: equal to, more han, less than fewer), most, least
- read and write numbers from 1 to 20 in numerals and words.

I can:

- count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward
- recognise the place value of each digit in a two-digit number (tens, ones)
- identify, represent and estimate numbers using different representations, including the number line
- compare and order numbers from 0 up to 100; use and = signs
- read and write numbers to at least 100 in numerals and in words
- use place value and number facts to solve problems

I can:

- ♣ count from 0 in multiples of 4, 8, 50 and 100: find 10 or 100 more or less than a given number
- recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
- compare and order numbers up to 1000
- ♣ identify, represent and estimate numbers using different representations
- read and write numbers up to 1000 in numerals and in words
- ♣ solve number problems and practical problems involving these ideas

I can:

- ♣ count in multiples of 6, 7, 9, 25 and 1000
- ♣ find 1000 more or less than a given number
- count backwards through zero to include negative numbers
- place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

♣ recognise the

- order and compare numbers beyond 1000
- identify, represent and estimate numbers using different representations
- round any number to the nearest 10, 100 or 1000
- solve number and practical problems that involve all of the

I can:

- * read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit
- count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000
- interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero
- round any number up to 1,000,000 to the nearest 10, 100, 1000, 10 000 and 100 000
- solve number problems and practical problems that involve all of the above

- * read, write, order and compare numbers up to 10 000 000 and determine the value of each digit
- round any whole number to a required degree of accuracy
- use negative numbers in context, and calculate intervals across zero
- solve number and practical problems that involve all of the above.

			above and with	♣ read Roman	
			increasingly large	numerals to 1000	
			positive numbers	(M) and recognise	
			♣ read Roman	years written in	
			numerals to 100 (I	Roman numerals.	
			to C) and know		
			that over time, the		
			numeral system		
			changed to include		
			the concept of zero		
			and place value		
1	I	I	I		

I can:			Aiveito
	Addition and Subtraction	♣ combine groups♣ find 1 more or 1less♣ represent anduse number bonds	* read, write and interpret mathematical statements involving addition (+), subtraction (- and equals (=) sig * represent and use number bond and related subtraction facts within 20 * add and subtraction facts within 20 * addition

an: read, write and erpret thematical tements olving addition), subtraction (–) id equals (=) signs represent and e number bonds d related btraction facts thin 20 add and subtract e-digit and twogit numbers to including zero solve one-step oblems that

number problems

such as 7 = -9.

♣ solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods olve addition d subtraction. ing concrete

I can:

♣ recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 add and subtract numbers using concrete objects, pictorial representations, and mentally,

including:

♣ a two-digit

number and ones

I can:

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers solve problems,
- including missing number problems, using number facts, place value, and more complex addition and subtraction

I can:

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate estimate and use
- inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

I can:

- ♣ add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

- multiply multidigit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders

			a a tour digit				according to the
			♣ a two-digit				according to the
			number and tens				context
			♣ two two-digit				♣ perform mental
			numbers				calculations,
			adding three				including with
			one-digit numbers				mixed operations
			♣ show that				and large numbers
			addition of two				identify common
			numbers can be				factors, common
			done in any order				multiples and
			(commutative) and				prime numbers
			subtraction of one				♣ use their
			number from				knowledge of the
			another cannot				order of operations
			♣ recognise and				to carry out
			use the inverse				calculations
			relationship				involving the four
			between addition				operations
			and subtraction				solve addition
			and use this to				and subtraction
			check calculations				multi-step
			and solve missing				problems in
			number problems.				contexts, deciding
	I can:	I can:	I can:	I can:	I can:	I can:	which operations
_	♣ make pairs	♣ solve one-step	♣ recall and use	♣ recall and use	♣ recall	♣ identify	and methods to
ם כ		problems involving	multiplication and	multiplication and	multiplication and	multiples and	use and why
Multiplication and Division		multiplication and	division facts for	division facts for	division facts for	factors, including	♣ solve problems
plication		division, by	the 2, 5 and 10	the 3, 4 and 8	multiplication	finding all factor	involving addition,
isi		calculating the	multiplication	multiplication	tables up to 12 ×	pairs of a number,	subtraction,
≌ ≳		answer using	tables, including	tables	12	and common	multiplication and
1 竞 1		concrete objects,	recognising odd	♣ write and	♣ use place value,	factors of two	division
⊒		pictorial	and even numbers	calculate	known and derived	numbers	♣ use estimation
2		representations	♣ calculate	mathematical	facts to multiply	know and use	to check answers
		and arrays with the	mathematical	statements for	and divide	the vocabulary of	to calculations and
		and arrays with the	mathematical	Statements for	and divide	the vocabalary of	10 00.00.00.00.0

support of the	statements for	multiplication and	mentally, including:	prime numbers,	determine, in the
teacher	multiplication and	division using the	multiplying by 0	prime factors and	context of a
	division within the	multiplication	and 1; dividing by	composite	problem, an
	multiplication	tables that they	1; multiplying	(nonprime)	appropriate degree
	tables and write	know, including for	together three	numbers	of accuracy.
	them using the	two-digit numbers	numbers	♣ establish	
	multiplication (×),	times one-digit	recognise and	whether a number	
	division (÷) and	numbers, using	use factor pairs	up to 100 is prime	
	equals (=) signs	mental and	and commutativity	and recall prime	
	show that	progressing to	in mental	numbers up to 19	
	multiplication of	formal written	calculations	♣ multiply	
	two numbers can	methods	multiply two-	numbers up to 4	
	be done in any	♣ solve problems,	digit and three-	digits by a one- or	
	order	including missing	digit numbers by a	two-digit number	
	(commutative) and	number problems,	one-digit number	using a formal	
	division of one	involving	using formal	written method,	
	number by another	multiplication and	written layout	including long	
	cannot	division, including	solve problems	multiplication for	
	solve problems	positive integer	involving	two-digit numbers	
	involving	scaling problems	multiplying and	multiply and	
	multiplication and	and	adding, including	divide numbers	
	division, using	correspondence	using the	mentally drawing	
	materials, arrays,	problems in which	distributive law to	upon known facts	
	repeated addition,	n objects are	multiply two digit	divide numbers	
	mental methods,	connected to m	numbers by one	up to 4 digits by a	
	and multiplication	objects.	digit, integer	one-digit number	
	and division facts,		scaling problems	using the formal	
	including problems		and harder	written method of	
	in contexts.		correspondence	short division and	
			problems such as n	interpret	
			objects are	remainders	
			connected to m	appropriately for	
			objects	the context	

 	 T-	
		♣ multiply and
		divide whole
		numbers and those
		involving decimals
		by 10, 100 and
		1000
		♣ recognise and
		use square
		numbers and cube
		numbers, and the
		notation for
		squared (2) and
		cubed (3)
		♣ solve problems
		involving
		multiplication and
		division including
		using their
		knowledge of
		factors and
		multiples, squares
		and cubes
		♣ solve problems
		involving addition,
		subtraction,
		multiplication and
		division and a
		combination of
		these, including
		understanding the
		meaning of the
		equals sign
		* solve problems
		involving
		IIIVOIVIIIg

					multiplication and division, including scaling by simple fractions and problems involving simple rates.	
Fractions, Decimals and Percentages	I can: * recognise, find and name a half as one of two equal parts of an object, shape or quantity * recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	I can: A recognise, find, name and write fractions 3 1, 4 1, 4 2 and 4 3 of a length, shape, set of objects or quantity A write simple fractions for example, 2 1 of 6 = 3 and recognise the equivalence of 4 2 and 2 1.	I can: Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Crecognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	I can: ♣ recognise and show, using diagrams, families of common equivalent fractions ♣ count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. ♣ solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit	I can: ♣ compare and order fractions whose denominators are all multiples of the same number ♣ identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths ♣ recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for	I can: ♣ use common factors to simplify fractions; use common multiples to express fractions in the same denomination ♣ compare and order fractions, including fractions > 1 ♣ add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions ♣ multiply simple pairs of proper fractions, writing the answer in its simplest form [for

♣ recognise and	fractions where the	example, 5 2 + 5 4	example, 41×21
show, using	answer is a whole	= 56 = 151]	= 81]
diagrams,	number	♣ add and subtract	♣ divide proper
equivalent	♣ add and subtract	fractions with the	fractions by whole
fractions with small	fractions with the	same denominator	numbers [for
denominators	same denominator	and denominators	example, 3 1 ÷ 2 =
♣ add and subtract	♣ recognise and	that are multiples	61]
fractions with the	write decimal	of the same	♣ associate a
same denominator	equivalents of any	number	fraction with
within one whole	number of tenths	multiply proper	division and
[for example, 7 5 +	or hundredths	fractions and	calculate decimal
71=76]	♣ recognise and	mixed numbers by	fraction
• compare and	write decimal	whole numbers,	equivalents [for
order unit	equivalents to 41,	supported by	example, 0.375] for
fractions, and	21,43	materials and	a simple fraction
fractions with the	♣ find the effect of	diagrams	[for example, 8 3]
same	dividing a one- or	♣ read and write	♣ identify the
denominators	two-digit number	decimal numbers	value of each digit
solve problems	by 10 and 100,	as fractions [for	in numbers given
that involve all of	identifying the	example, 0.71 =	to three decimal
the above	value of the digits	100 71]	places and multiply
the above	in the answer as	• recognise and	and divide
	ones, tenths and	use thousandths	numbers by 10,
	hundredths	and relate them to	100 and 1000
	* round decimals	tenths, hundredths	giving answers up
		and decimal	to three decimal
	with one decimal place to the	equivalents	places
	nearest whole	• round decimals	• multiply one-
			, <i>,</i>
	number	with two decimal	digit numbers with up to two decimal
	♣ compare	places to the	· •
	numbers with the	nearest whole	places by whole numbers
	same number of	number and to one	
	decimal places up	decimal place	♣ use written
			division methods in

		to two decimal	♣ read, write,	cases where the
		places	order and compare	answer has up to
		♣ solve simple	numbers with up to	two decimal places
		·	three decimal	·
		measure and		♣ solve problems
		money problems	places	which require
		involving fractions	solve problems	answers to be
		and decimals to	involving number	rounded to
		two decimal places	up to three decimal	specified degrees
			places	of accuracy
			recognise the	recall and use
			per cent symbol	equivalences
			(%) and understand	between simple
			that per cent	fractions, decimals
			relates to 'number	and percentages,
			of parts per	including in
			hundred', and	different contexts
			write percentages	
			as a fraction with	
			denominator 100,	
			and as a decimal	
			♣ solve problems	
			which require	
			knowing	
			percentage and	
			decimal	
			equivalents of 2 1,	
			41,51,52,54	
			and those fractions	
			with a	
			denominator of a	
			multiple of 10 or	
			25.	

	I can:	I can
	compare mass,	♣ cor
	capacity, height,	descr
	length and time	practi
		for:
		♣ len
		heigh
		exam
		long/
		longe
		tall/sl
		doub
		♣ ma
Ŋ		exam heavy
בַּ		heavi
Ĕ		lighte
<u>re</u>		♣ cap
Measurements		volun
ĕ		exam
_		full/e
		than,
		half, l
		quart
		♣ tim
		exam
		slowe
		later]
		♣ me
		begin
	I	follow

mpare, ribe and solve tical problems

- ngths and hts [for nple, /short, er/shorter, hort, le/half]
- ass/weight [for nple, y/light, ier than, er than]
- pacity and me [for nple, empty, more less than. half full, ter]
- ne [for iple, quicker, er, earlier,
- easure and n to record the following:
- lengths and heights
- mass/weight

I can:

- choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g);temperature (°C); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and
- order lengths, mass, volume/capacity and record the results using >, < and =
- recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value find different
- combinations of coins that equal

I can:

- measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g);volume/capacity (I/mI) ♣ measure the perimeter of simple 2-D shapes add and subtract amounts of money to give change, using both £ and p in practical contexts
- tell and write the time from an analogue clock, including using Roman numerals from I to XII. and 12-hour and 24hour clocks estimate and read time with
- increasing accuracy to the nearest minute; record and compare time in terms of seconds. minutes and hours: use vocabulary such as o'clock,

I can:

- Convert between different units of measure [for example, kilometre to metre: hour to minute] measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
- find the area of rectilinear shapes by counting squares

estimate,

- compare and calculate different measures, including money in pounds and pence ♣ read, write and
- convert time between analogue and digital 12- and 24-hour clocks
- solve problems involving converting from hours to minutes: minutes to

I can:

- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre: centimetre and millimetre; gram and kilogram; litre and millilitre)
- understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints measure and
- calculate the perimeter of composite rectilinear shapes in centimetres and metres calculate and compare the area of rectangles

(including squares),

and including using

square centimetres

standard units.

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
- ♣ use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
- convert between miles and kilometres
- recognise that shapes with the same areas can have different perimeters and vice versa

	1	I			
capacity and	the same amounts	a.m./p.m.,	seconds; years to	(cm2) and square	recognise when
volume	of money	morning,	months; weeks to	metres (m2) and	it is possible to use
♣ time (hours,	♣ solve simple	afternoon, noon	days	estimate the area	formulae for area
minutes, seconds)	problems in a	and midnight		of irregular shapes	and volume of
recognise and	practical context	♣ know the		estimate volume	shapes
know the value of	involving addition	number of seconds		[for example, using	calculate the
different	and subtraction of	in a minute and the		1 cm3 blocks to	area of
denominations of	money of the same	number of days in		build cuboids	parallelograms and
coins and notes	unit, including	each month, year		(including cubes)]	triangles
♣ sequence event	giving change	and leap year		and capacity [for	calculate,
in chronological	compare and	♣ compare		example, using	estimate and
order using	sequence intervals	durations of events		water]	compare volume of
language [for	of time	[for example to		solve problems	cubes and cuboids
example, before	tell and write the	calculate the time		involving	using standard
and after, next,	time to five	taken by particular		converting	units, including
first, today,	minutes, including	events or tasks		between units of	cubic centimetres
yesterday,	quarter past/to the			time	(cm3) and cubic
tomorrow,	hour and draw the			use all four	metres (m3), and
morning, afternoo				operations to solve	extending to other
and evening]	face to show these			problems involving	units [for example,
recognise and	times			measure [for	mm3 and km3].
use language	know the			example, length,	
relating to dates,	number of minutes			mass, volume,	
including days of	in an hour and the			money] using	
the week, weeks,	number of hours in			decimal notation,	
months and years	a day.			including scaling.	
♣ tell the time to					
the hour and half					
past the hour and					
draw the hands or	n				
a clock face to					
show these times					

fy and the es of 2-D including ber of d line ry in a ine fy and the es of 3-D including ber of ertices and fy 2-D n the of 3-D for on a

shapes, [for example, a circle on a cylinder and a triangle on a pyramid]

compare and sort common 2-D and 3-D shapes and everyday objects

order and arrange combinations of mathematical objects in patterns and sequences

I can:

turn

- ♣ draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them
 ♣ recognise angles as a property of shape or a description of a
- ♣ identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle ♣ identify horizontal and

vertical lines and

perpendicular and

parallel lines

pairs of

I can:

- classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
- ♣ identify acute and obtuse angles and compare and order angles up to two right angles by size
- ♣ identify lines of symmetry in 2-D shapes presented in different orientations
- complete a simple symmetric figure with respect to a specific line of symmetry.
 describe
- positions on a 2-D grid as coordinates in the first quadrant
- describe
 movements
 between positions
 as translations of a
 given unit to the

I can:

- ♣ identify 3-D shapes, including cubes and other cuboids, from 2-D representations
- A know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
- draw given angles, and measure them in degrees (o)
 identify:
- angles at a point and one whole turn (total 3600) angles at a point on a straight line and 21 a turn (total 1800) other multiples of 900
- use the properties of rectangles to deduce related facts and find missing lengths and angles

- draw 2-D shapes using given dimensions and angles
- recognise, describe and build simple 3-D shapes, including making nets
- A compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
- ♣ illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
 ♣ recognise angles
- * recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.

		1			
	♣ use		left/right and	distinguish	describe
	mathemat		up/down ♣ plot	between regular	positions on the
	vocabulary	to	specified points	and irregular	full coordinate grid
	describe p	osition,	and draw sides to	polygons based on	(all four quadrants)
	direction a	nd	complete a given	reasoning about	draw and
	movement	,	polygon	equal sides and	translate simple
	including			angles	shapes on the
	movement	in a		identify, describe	coordinate plane,
	straight lin	e and		and represent the	and reflect them in
	distinguish	ing		position of a shape	the axes.
	between re	otation		following a	
	as a turn a	nd in		reflection or	
	terms of ri	ght		translation, using	
	angles for	quarter,		the appropriate	
	half and th	ree-		language, and	
	quarter tu	ns		know that the	
	(clockwise	and		shape has not	
	anti-clocky	vise).		changed.	
	I can:	l can:	I can:	I can:	I can:
	♣ interpre	t and 👫 interpret and	interpret and	♣ solve	interpret and
	construct s	imple present data using	present discrete	comparison, sum	construct pie
	pictograms	, tally bar charts,	and continuous	and difference	charts and line
	charts, blo	ck pictograms and	data using	problems using	graphs and use
_	diagrams a	nd tables	appropriate	information	these to solve
<u>S</u>	simple tab	es solve one-step	graphical methods,	presented in a line	problems
Statistics	♣ ask and	answer and two-step	including bar charts	graph	calculate and
ati	simple que	stions questions [for	and time graphs.	complete, read	interpret the mean
St	by countin	g the example, 'How	♣ solve	and interpret	as an average.
	number of	objects many more?' and	comparison, sum	information in	
	in each cat		and difference	tables, including	
	and sorting	g the fewer?'] using	problems using	timetables.	
	categories	by information	information		
	quantity	presented in scaled	presented in bar		
		bar charts and	charts, pictograms,		

		* ask and answer questions about totalling and comparing categorical data	pictograms and tables	tables and other graphs	
Ratio and Proportion					I can: ♣ solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts ♣ solve problems involving the calculation of percentages [for example, of
					measures, and such as 15% of 360] and the use of percentages for comparison

				♣ solve problems
				involving similar
				shapes where the
				scale factor is
				known or can be
				found
				solve problems
				involving unequal
				sharing and
				grouping using
				knowledge of
				fractions and
				multiples.
				I can:
				♣ use simple
				formulae
				♣ generate and
				describe linear
				number sequences
				♣ express missing
a				number problems
Algebra				algebraically
g				♣ find pairs of
₹				numbers that
				satisfy an equation
				with two
				unknowns
				♣ enumerate
				possibilities of
				combinations of
				two variables.