Alverton Curriculum Progression in Maths

Alverton Curriculum Progression in Maths

\& count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number ※ count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens

* given a number, identify one more and one less
* identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least
\& read and write numbers from 1 to 20 in numerals and words.

I can:

* count in steps of

2,3 , and 5 from 0 , and in tens from any number,
forward and backward
\& recognise the place value of each digit in a two-digit number (tens, ones)

* identify,
represent and estimate numbers using different representations, including the number line
\& compare and order numbers from 0 up to 100; use and = signs
\& read and write numbers to at least 100 in numerals and in words \& use place value and number facts to solve problems

I can:
\& count from 0 in multiples of 4,8 , 50 and 100; find 10 or 100 more or less than a given number
\& recognise the place value of each digit in a three-digit number (hundreds, tens, ones)

- compare and order numbers up to 1000
* identify, represent and estimate numbers using different representations \& read and write numbers up to 1000 in numerals and in words \& solve number problems and practical problems involving these ideas
a. count in
multiples of $6,7,9$,
25 and 1000
\& find 1000 more
or less than a given number
\& count backwards
through zero to
include negative numbers
\& recognise the place value of each digit in a four-digit number
(thousands, hundreds, tens, and ones)
\therefore order and compare numbers beyond 1000
* identify, represent and estimate numbers using different representations
\& round any number to the nearest 10, 100 or 1000
a solve number and practical problems that involve all of the

I can:

* read, write, order and compare numbers to at least 1000000 and determine the value of each digit
* count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000
\& interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero \& round any number up to 1,000,000 to the nearest 10,100 , 1000, 10000 and 100000
* solve number problems and practical problems that involve all of the above

I can:

* read, write, order and compare numbers up to 10 000000 and determine the value of each digit
* round any whole number to a required degree of accuracy * use negative numbers in context, and calculate intervals across zero * solve number and practical problems that involve all of the above.

Alverton Curriculum Progression in Maths

					above and with increasingly large positive numbers * read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	* read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	

Alverton Curriculum Progression in Maths

I can:
\& combine groups
\& find 1 more or 1
less
$\&$ represent and
use number bonds
to 10
I can:
\& read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs \& represent and use number bonds and related subtraction facts within 20

* add and subtract one-digit and twodigit numbers to 20 , including zero \& solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.

I can:
\& solve problems
with addition and subtraction:

* using concrete
objects and pictorial
representations, including those involving numbers, quantities and measures
* applying their increasing knowledge of mental and written methods
* recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
\& add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
\& a two-digit

I can: I can: - I can:

* add and subtract numbers mentally, including:
* a three-digit number and ones * a three-digit number and tens
* a three-digit number and hundreds
a add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction \& estimate the answer to a calculation and use inverse operations to check answers \& solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

I can:

* add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
\& add and subtract numbers mentally with increasingly large numbers * use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
* solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

I can:

* multiply multidigit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication a divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
* divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders

Alverton Curriculum Progression in Maths

			\& a two-digit number and tens * two two-digit numbers * adding three one-digit numbers * show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot \& recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.				according to the context \& perform mental calculations, including with mixed operations and large numbers \& identify common factors, common multiples and prime numbers \& use their knowledge of the order of operations to carry out calculations involving the four operations \% solve addition and subtraction multi-step problems in contexts, deciding
	I can: * make pairs	I can: * solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the	I can: recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers \& calculate mathematical	I can: recall and use multiplication and division facts for the 3,4 and 8 multiplication tables write and calculate mathematical statements for	I can: * recall multiplication and division facts for multiplication tables up to $12 \times$ 12 use place value, known and derived facts to multiply and divide	I can: \& identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of	which operations and methods to use and why * solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and

Alverton Curriculum Progression in Maths

Alverton Curriculum Progression in Maths

						* multiply and divide whole numbers and those involving decimals by 10,100 and 1000 * recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3) * solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes \& solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign * solve problems involving	

Alverton Curriculum Progression in Maths

						multiplication and division, including scaling by simple fractions and problems involving simple rates.	
Fractions, Decimals and Percentages		I can: * recognise, find and name a half as one of two equal parts of an object, shape or quantity \& recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	I can: * recognise, find, name and write fractions 31,41, 42 and 43 of a length, shape, set of objects or quantity \& write simple fractions for example, 21 of $6=$ 3 and recognise the equivalence of 42 and 21 .	I can: \& count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing onedigit numbers or quantities by 10 \& recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators \& recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	I can: \& recognise and show, using diagrams, families of common equivalent fractions * count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. \& solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit	I can: \& compare and order fractions whose denominators are all multiples of the same number * identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths \& recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for	I can: \& use common factors to simplify fractions; use common multiples to express fractions in the same denomination \& compare and order fractions, including fractions >1 \& add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions * multiply simple pairs of proper fractions, writing the answer in its simplest form [for

Alverton Curriculum Progression in Maths

				\& recognise and show, using diagrams, equivalent fractions with small denominators * add and subtract fractions with the same denominator within one whole [for example, 75 + 71 = 76] * compare and order unit fractions, and fractions with the same denominators * solve problems that involve all of the above	fractions where the answer is a whole number \& add and subtract fractions with the same denominator \& recognise and write decimal equivalents of any number of tenths or hundredths * recognise and write decimal equivalents to 41 , 21,43 \& find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths \& round decimals with one decimal place to the nearest whole number * compare numbers with the same number of decimal places up	> example, $52+54$ $=56=151$] \& add and subtract fractions with the same denominator and denominators that are multiples of the same number \& multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams * read and write decimal numbers as fractions [for example, 0.71 = 10071] \& recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents * round decimals with two decimal places to the nearest whole number and to one decimal place	example, 41×21 = 81] * divide proper fractions by whole numbers [for example, $31 \div 2$ = 61] \& associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 83] * identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10 , 100 and 1000 giving answers up to three decimal places * multiply onedigit numbers with up to two decimal places by whole numbers use written division methods in

Alverton Curriculum Progression in Maths

					to two decimal places * solve simple measure and money problems involving fractions and decimals to two decimal places	* read, write, order and compare numbers with up to three decimal places * solve problems involving number up to three decimal places \& recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal \& solve problems which require knowing percentage and decimal equivalents of 21 , 41,51,52,54 and those fractions with a denominator of a multiple of 10 or 25.	cases where the answer has up to two decimal places \& solve problems which require answers to be rounded to specified degrees of accuracy \& recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

Alverton Curriculum Progression in Maths

Alverton Curriculum Progression in Maths

		\& capacity and volume * time (hours, minutes, seconds) \& recognise and know the value of different denominations of coins and notes * sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] \& recognise and use language relating to dates, including days of the week, weeks, months and years \& tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	the same amounts of money \& solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change * compare and sequence intervals of time \& tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times \& know the number of minutes in an hour and the number of hours in a day.	a.m./p.m., morning, afternoon, noon and midnight \& know the number of seconds in a minute and the number of days in each month, year and leap year \& compare durations of events [for example to calculate the time taken by particular events or tasks	seconds; years to months; weeks to days	(cm2) and square metres (m2) and estimate the area of irregular shapes \& estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water] \& solve problems involving converting between units of time \& use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	\& recognise when it is possible to use formulae for area and volume of shapes \& calculate the area of parallelograms and triangles \& calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3].

Alverton Curriculum Progression in Maths

Geometry - Shape, Space and Position	I can: \& recognise triangles, circles, rectangles and squares \& recognise some 2D and 3D shapes \& explore position and patterns	I can: \& recognise and name common 2-D and 3-D shapes, including: \& 2-D shapes [for example, rectangles (including squares), circles and triangles] * 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. $\%$ describe position, direction and movement, including whole, half, quarter and threequarter turn	I can: * identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line * identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces * identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] * compare and sort common 2-D and 3-D shapes and everyday objects * order and arrange combinations of mathematical objects in patterns and sequences	I can: \& draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them \& recognise angles as a property of shape or a description of a turn \& identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle \& identify horizontal and vertical lines and pairs of perpendicular and parallel lines	I can: \& compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes \& identify acute and obtuse angles and compare and order angles up to two right angles by size * identify lines of symmetry in 2-D shapes presented in different orientations * complete a simple symmetric figure with respect to a specific line of symmetry. \& describe positions on a 2-D grid as coordinates in the first quadrant \& describe movements between positions as translations of a given unit to the	I can: \& identify 3-D shapes, including cubes and other cuboids, from 2-D representations * know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees (o) * identify: angles at a point and one whole turn (total 360o) angles at a point on a straight line and 21 a turn (total 180o) other multiples of 900 * use the properties of rectangles to deduce related facts and find missing lengths and angles	I can: * draw 2-D shapes using given dimensions and angles \& recognise, describe and build simple 3-D shapes, including making nets \& compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons \& illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius * recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.

Alverton Curriculum Progression in Maths

			* use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti-clockwise).		left/right and up/down \& plot specified points and draw sides to complete a given polygon	* distinguish between regular and irregular polygons based on reasoning about equal sides and angles * identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	* describe positions on the full coordinate grid (all four quadrants) - draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
$\begin{aligned} & 0 \\ & \stackrel{0}{\#} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$			I can: \& interpret and construct simple pictograms, tally charts, block diagrams and simple tables * ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity	I can: * interpret and present data using bar charts, pictograms and tables * solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?’] using information presented in scaled bar charts and	I can: * interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. \& solve comparison, sum and difference problems using information presented in bar charts, pictograms,	I can: \& solve comparison, sum and difference problems using information presented in a line graph \& complete, read and interpret information in tables, including timetables.	I can: * interpret and construct pie charts and line graphs and use these to solve problems * calculate and interpret the mean as an average.

Alverton Curriculum Progression in Maths

| | | | | a ask and answer
 questions about
 totalling and
 comparing
 categorical data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | pictograms and
 tables | tables and other
 graphs | |

Alverton Curriculum Progression in Maths

							* solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
							I can: * use simple formulae \because generate and describe linear number sequences \& express missing number problems algebraically * find pairs of numbers that satisfy an equation with two unknowns \& enumerate possibilities of combinations of two variables.

